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A geostrophic circulation and a pair of oblique oscillating shear layers arise in a
spherical fluid cavity contained in a slowly precessing rigid body. Both are caused
by the breakdown of the Ekman boundary layer at two critical circles. We rely on
numerical modelling to characterize these motions for very small Ekman numbers.
Both the O(E1/5) amplitude of the velocity in the oscillating shear layer and the
width (also O(E1/5)) of these oblique layers are the result of influx into the interior
from the regions where the Ekman layer breaks down. The oscillating motions are
confined to narrow shear layers and their amplitude decays exponentially away from
the characteristic surfaces. Nonlinear interactions inside the boundary layer drive the
geostrophic shear layer attached to the critical circles. This steady layer, again of
O(E1/5) thickness, contains O(E−3/10) velocities. Our results are in good agreement
with the experimental measurement by Malkus of the geostrophic velocity arising in
a slowly precessing spheroid.

1. Introduction
Motions, with diurnal period, are produced, inside the Earth’s fluid core, by the slow

precession of the Earth’s rotation axis. The amplitude of these motions is unknown as
they do not cause changes in the magnetic field measured at the Earth’s surface. They
have been neglected in numerical studies of the geodynamo because the magnetic
diffusion time of the Earth’s core is large compared to diurnal periods. However,
nonlinear interaction between these motions may yield slowly varying flows that can
play a role in the generation of the magnetic field (Malkus 1968).

In the absence of either direct or indirect observations, laboratory experiments,
theoretical investigations and numerical calculations have been particularly important
for our understanding of fluid motions inside the Earth’s core due to the precession of
the mantle. Neglecting viscous friction at the core–mantle boundary, Poincaré (1910)
calculated the response of the fluid to the precession of its spheroidal boundary. It is
little different from a rotation about an equatorial axis, the (2, 1, 1) mode, as denoted
in the classification of Greenspan (1968) for spherical inertial modes, and it has to
be considered in studies of nutation of the Earth’s axis of rotation. The correction to
this mode due to viscous friction at the boundary is not easily calculated because the
Ekman layer of width E1/2 (where E is the Ekman number) is singular at the critical
circles. There, the viscous term does not enter the balance of forces at the main
order. As a consequence, the radial lengthscale is large compared to E1/2. Roberts &
Stewartson (1963) found indeed that the depth of the boundary layer scales as E2/5
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in a region of O(E1/5) dimension around the critical latitude (at 30◦ latitude in the
sphere). Then, Busse (1968) calculated the viscous correction to the Poincaré motion
in a precessing spheroid. He obtained his solution by assuming a double expansion
involving two small parameters E1/2 and ε, the amplitude of the boundary-layer flow.
Busse found that at the order E1/2 ε the interior flow can be expressed as ω× r, where
r is the position vector and ω is a rotation vector, which is constant in the frame of
reference which rotates with the precession rate. He showed that the critical circles at
which the Ekman layer breaks down occur with respect to ω.

The interior sees the breakdown of the E1/2-layer as a singularity since there the
flow emitted by the boundary layer does not scale as E1/2. Kerswell (1995) realized
that the Ekman layer breakdown spawns an inertial wave into the interior and he
conjectured that the scaling of its wavelength stems directly from the O(E1/5) size
of the source. The scaling of the influx into the interior from the critical zones of
the boundary layer was given by Stewartson & Roberts (1963), in their study of
the motion in a precessing spheroid. It is O(E1/5) instead of O(E1/2) away from the
singularities. We may then anticipate that the velocity in the oscillating shear layers
scale also as E1/5 (rather than E3/10 as suggested by Kerswell). The singularity is
propagated along the characteristic surfaces of the equation governing inertial waves
with diurnal period. The characteristic surfaces are cones symmetric about the fluid’s
rotation axis which have semi-angle 30◦. In a sphere, there are two characteristic
surfaces each associated with one of the two critical circles (Hollerbach & Kerswell
1995). Both cones meet the rotation axis at a pole on the boundary and this makes
the spherical problem special. Numerical modelling can validate the conjectures listed
above about the behaviour of the solution as E → 0. We give also particular attention
to the decay of the shear away from the characteristics attached to the Ekman layer
breakdown. We rely, for this study, on the spin-over problem, which may be described
as a linearization of the precession problem.

However, explaining the geostrophic circulation exhibited by Malkus (1968) neces-
sitates nonlinear studies. Malkus was particularly interested by the turbulence that
he witnessed at large precession rate of an oblate spheroid but he also visualized, at
smaller precession rate, a geostrophic circulation. To date, the Malkus’ observations
give the only quantitative measure of the geostrophic circulation arising in a precess-
ing spheroid (see our figure 8). Greenspan (1969) proved that the nonlinear interaction
of inviscid inertial modes cannot produce a geostrophic flow. This highlighted the im-
portance of the study by Busse (1968). This author showed that nonlinear interactions
between different parts of the boundary-layer flow, of amplitude ε, yield, at the order
ε2, a geostrophic shear extending into the interior. The findings of Busse explained
well the experimental results of Malkus (1968), notwithstanding the divergence of the
solution at the critical circles where the O(E1/2) scaling for the width of the Ekman
layer fails. In order to remedy the divergence of the solution found by Busse, a study
of the nonlinearities in the boundary layer at the two critical circles is required. The
complete asymptotic theory appears difficult to obtain. Our numerical investigation of
the full precession problem allows us nevertheless to outline such a study. We propose
asymptotic laws for the thickness of the axial shear layer and for the velocities that
it contains. As showed by Busse, we do not lose generality here by studying only the
spherical case. It enables us also to describe finite viscosity effects, such as possible
nonlinear interaction of the motions inside the oblique shear layers.

The inertial waves, that make the shear layers, are not much affected by viscous
forces because their lengthscale is large compared to the E1/3 natural scale. Away
from the critical circles, they obey the no-penetration condition (at the order E1/2),
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crucial to Greenspan’s proof. As a result, their nonlinear interaction does not yield,
in the limit of vanishing viscosity, a steady geostrophic circulation, notwithstanding
the geostrophic shear attached to the critical circles and pointed out by Busse (1968).
On the other hand, Vanyo et al. (1995) have observed several axial shear structures
in an oblate precessing spheroid filled with water (their figure 2). Because of light
refraction at the interface between Plexiglas and air, the photographs of Vanyo et
al. (1995) do not show the shear predicted by Busse and observed by Malkus but
instead axial shear layers occurring at smaller distances to the rotation axis. Hence,
Hollerbach & Kerswell (1995), in the course of their investigation of the unforced
spin-over mode in a sphere, suggested that, in addition to the geostrophic shear found
by Busse, which can be explained by the breakdown of the Ekman layer only, other
shear zones arise as the result of nonlinear interaction between the inertial waves in
the interior. If true, it is a finite viscosity effect. Investigating the precessionally forced
mode in the sphere allows us to question the suggestion put forward by Hollerbach
& Kerswell to explain these structures. The ellipticity of the oblate spheroid that has
been used in the experiment of Vanyo et al. (1995) is indeed small compared to E1/5.
We may thus consider it spherical. Finally, a recent study by Tilgner (1999b) of the
flow in a precessing spherical shell is best discussed, in the light of our results, at the
end of the article.

Section 2 describes the equations that are solved and the numerical method. Section
3 treats the linear problem. It is focused on the scaling of the inertial waves emitted
by the singularity in the Ekman layer. Results about the full precession problem are
given in § 4. We treat it as an initial-value problem. We conclude with a discussion that
includes a comparison between the quantitative measurements of Malkus (1968) and
our numerical solution. Possible implications for Earth’s core dynamics are considered
also.

2. Equations of the problem
An incompressible fluid of kinematic viscosity ν is enclosed in a spherical container

of radius R. The sphere is spinning with a frequency ωc along k̂c, and precessing

at ωcΩp along k̂p. Units of length and time are chosen as R and ω−1
c , respectively,

E = ν/ωcR
2 is the Ekman number. Following Busse (1968), we assume that the main

response of the fluid to the precession of the container is a solid-body rotation ω× r
on which a secondary flow is superimposed and that the rotation vector ω is also
precessing at ωcΩp. We write the momentum equation in a referential frame attached
to the solid-body rotation of the fluid. Including the centrifugal force in the reduced
pressure ϕ, the momentum equation for u reads:

∂u

∂t
+ 2(Ωpk̂p(t) + ω)× u+ (Ωpk̂p(t)× ω)× r + (u · ∇)u = −∇ϕ+ E∇2u. (2.1)

Boundary conditions are no-slip and no-penetration at r = 1:

u = (k̂c(t)− ω)× r. (2.2)

The vectors k̂p(t) and k̂c(t) are time-dependent.
Equation (2.1) is invariant under parity transformation P : r → −r, u → −u.

We can thus divide the solutions of this equation into two sets. The forcing at the
boundary is symmetric under parity. Antisymmetric motions may thus arise only as
a consequence of a bifurcation. Hence, we leave aside this set of velocity fields in § 3.

We have found that the choice of the rotation vector ω is crucial to obtain an



286 J. Noir, D. Jault and P. Cardin

accurate solution of the precession problem. To obtain the same level of accuracy, a
much larger truncation level M (see (A 2) and (A 3)) would be required if the choice
of the rotation vector were not appropriate. We start our time-stepping calculations
with the rotation vector analytically determined by Busse (1968). Then, we correct it
by the residual solid-body rotation that we have inferred numerically. In addition,
this procedure also makes the analysis of the results easier as the location of the
different shear layers are determined with respect to ω. The final solution is steady
in the frame of reference that rotates with the precession rate. Time integration is of
the order of a few spin-up times E−1/2ω−1

c . Other details of the numerical method are
left for the Appendix.

3. Viscous correction to the spinover mode
We study first the linear problem. Neglecting the nonlinear terms allows us to

calculate the solution for very low values of the Ekman number (down to E = 10−8)
and to determine the structure of the shear layer spawned by the Ekman layer
breakdown at 30◦ latitude. Let us again consider a fluid rotating with its spherical
container at ωc. We assume that the axis of rotation of the shell is suddenly tilted by
an infinitesimal quantity, so that the problem is linear. The momentum equation in
the coordinate system rotating with ωc is:

∂u

∂t
+ 2k̂c × u = −∇ϕ+ E∇2u, (3.1)

with the rigid boundary condition:

u = 0. (3.2)

It amounts to equation (2.1) with Ωp � 1, ω = k̂c and the nonlinear terms neglected.
We consider as initial condition a differential rotation between the fluid and the solid
container around an axis in the equatorial plane. Then, the primary velocity is a
rotation about an equatorial axis fixed in the inertial space, referred to as the (2, 1, 1)
mode by Greenspan (1968). The rotation vector is denoted by ω1. We look on the
viscous correction to this inviscid mode. Only (m = 1) terms need to be considered
(see (A 4) for the definition of m).

3.1. The (2, 1, 1) mode

Taking into account the viscous boundary layer, Greenspan gives the exponential
decay −2.62E1/2 of the amplitude of the mode (2, 1, 1) and the viscous correction
−0.259E1/2 to its eigenfrequency. In the numerical study of Hollerbach & Kerswell
(1995) as in ours, the observed decay factor seems to approach asymptotically the
coefficient determined analytically. Figure 1 shows the decay factor λ for different
Ekman numbers. It transpires that the expansion (Greenspan 1968) in powers of E1/2

holds at first order. The oblique shear layers studied below do not have a significant
effect on the viscous damping of the spin-over mode. As a result, we may expect that
the expression (see equation (4.1)) given by Busse (1968) for the solid-body rotation
of a fluid enclosed in a precessing spherical cavity is very accurate also. Indeed, Busse
has assumed the same expansion in powers of E1/2 to determine the boundary-layer
effects.
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Figure 1. Viscous decay of the mode (2, 1, 1). An exponential fit to the
calculated decay rate λ is also reported.

3.2. The internal shear layer

The numerical calculations of Hollerbach & Kerswell (1995) have shown internal
shear zones spawned by singularities in the Ekman boundary layer at the criti-
cal latitude of 30◦. Kerswell (1995) argued that the O(E1/5) width of the region
where the Ekman layer breaks down determines the lengthscale of the shear layer
because it is larger than the O(E1/3) natural lengthscale. In order to study the
shear layer, we first remove a solid-body rotation about an equatorial axis (the
(2, 1, 1) component of the velocity field). In this subsection, the velocity unit is
ω1 R. Figure 2 shows the three components of the residual velocity for Ekman
numbers ranging from 10−6 to 10−8. Internal shear layers organized along character-
istic surfaces of equation (3.1), which is hyperbolic for diurnal motions, are clearly
visible.

Let us consider a cross-section of the internal shear zone. At the constant 30◦
latitude, the velocity components are given as a function of radius (figure 3). With
this choice, both uθ and uφ are parallel to the characteristic surface ((r, θ, φ) are
spherical coordinates). The cross-section is directed along the wave vector and the

shear layer is centred on (r = 0.5), in the meridional plane defined by k̂c and ω1. We
consider that the wavelength scales as E1/5, as anticipated by Kerswell, with a prefactor
of the order of the sphere radius. The velocities tangential to the characteristic cones
scale also as E1/5 and decay exponentially away from the shear layers. In order
to illustrate these effects, we have rescaled both the distance from the shear layer
r∗ − 0.5 = E−1/5(r − 0.5) and the velocity amplitude u∗ = E−1/5u (figure 3). Table 1
shows the extrema of uφ as a function of the distance to the characteristic surface.
We find that the decay exponent is O(E−1/5), as the wavenumber. In each meridional
plane, the velocity is almost invariant along the characteristic lines. It changes as s−1/2
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Figure 2. For caption see facing page.

(Rieutord & Valdetarro 1997), where s is the cylindrical radius. It is dictated by the
radial velocity either entering or leaving the boundary layer at the critical circles. Let
us recall, for future reference, the elucidation of this boundary layer by Roberts &
Stewartson (1963).

These authors write the momentum equation in the boundary layer near a critical
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Figure 2. The three components of the flow in the meridional plane containing k̂c and ω1.
Left-hand column: ur . Middle column: uθ . Right-hand column: uφ. From top to bottom:
E = 10−6, E = 10−7, E = 10−8. Contour intervals dV , maxima Vmax, and minima Vmin are indi-
cated on each figure. —— (– – –), positive (negative) values. · · · · ·, zero isocontour line. Only fifteen
isocontour lines are shown and large values are not plotted.
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r∗ u∗φ ln(|u∗φ|)/|r∗| r∗ u∗φ ln(|u∗φ|)/|r∗|
−7.64 0.00034 −1.05 1.07 0.36554 −0.94
−6.69 0.00198 −0.91 2.80 −0.19402 −0.58
−5.75 −0.00179 −1.13 4.11 0.03195 −0.84
−4.92 0.00386 −1.11 5.05 −0.01050 −0.90
−3.93 −0.01639 −1.05 5.89 0.00171 −1.05
−2.68 0.08951 −0.90 6.55 −0.00153 −1.02
−1.10 −0.31819 −1.05 7.14 0.00035 −1.02

Table 1. Distance to the characteristic surface and value of the extrema of u∗φ = E−1/5uφ (as inferred

from figure 3). r∗ = E−1/5(r − 0.5) + 0.5. E = 10−8. The third columns show exponential decay of
the velocity amplitude away from the characteristic surface located at r∗ = 0.

0.50

0.25

0

–0.25

–0.50

E
–1

/5
 u

φ
(a)

1.0

0.5

0

–0.5

–1.0
–15 –10 –5 0 5 10

E
–1

/5
 u

θ

E = 10–6

10–6.5

10–7

10–7.5

10–8

E = 10–6

10–6.5

10–7

10–7.5

10–8

(b)

E–1/5 (r–0.5) + 0.5 E–1/5 (r–0.5) + 0.5

–15 –5 5

Figure 3. Structure of the internal shear layer at θ = 1
3
π, for which the radial direction is normal

to the characteristic surface (r = 0.5). The radial coordinate is stretched by the factor E−1/5. A
diagram showing the cross-section in a meridional plane is inserted into (a). (a) E−1/5uθ , (b) E−1/5uφ
as a function of the distance to the characteristic surface, for different values of the Ekman number
E. Shear in the boundary layer (here of width O(E2/5)) causes spikes on the left-hand side of both
figures for E = 10−6.

circle. Retaining both the radial and the tangential derivative ∂/∂θ, they obtain:

(1± 2 cos θ)
∂u±
∂r

= −iE
∂3u±
∂r3
± 2 sin θ

r

∂u±
∂θ

with u± = uθ ± iuφ. (3.3)

Away from the critical circles (2 cos θ0 = ±1), they recover a classical Ekman layer
and the third term can be neglected. In the critical zone (of the Northern hemisphere
to be specific), they write (θ = θ0 + ψ) in order to transform equation (3.3) into:

2 sin θ0ψ
∂u−
∂r

= −iE
∂3u−
∂r3
− 2 sin θ0

r

∂u−
∂ψ

. (3.4)

Thus, they obtain the scaling as E2/5 along the radius and E1/5 in the θ-direction.

In our problem, the horizontal velocity scales as ε = ω1 = |ω − k̂c|, where ω is the
solid-body rotation in the interior. From the mass conservation equation, it follows
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scaled by E1/5, as a function of the latitude and the distance to the surface. Top (bottom) figure:
blow-up of the solution for E = 10−6 (E = 10−8). Same isocontour lines for the two figures.

that ur is O(εE1/5) (Stewartson & Roberts 1963). Figure 4 illustrates these different
scalings.

That explains the amplitude of the velocity field along the characteristic surfaces.
The remaining O(εE1/5) discontinuity in the horizontal components would be removed
at the next order of an expansion in powers of E1/5. This result differs from the
predictions (E3/10 scaling, algebraic decay) based on an analytical study of the coaxial
disk system. Kerswell (1995) applied the work of Walton (1975), who had studied the
inertial waves propagating from an abrupt discontinuity in the boundary conditions,
to the singularity associated with the breakdown of the Ekman layer at 30◦ latitude.
A first difficulty arises because of the spherical geometry of our model. In the coaxial
disk system and in an oblate spheroid as well, the characteristic surfaces meet the
boundary away from the rotation axis; reflection of the wave generates another shear
layer as do subsequent reflections on the boundary. At each reflection, energy is
dissipated in the boundary layer. Such a phenomenon does not take place in the
sphere and this makes the spherical problem special. On the other hand, we think
that the origin of the discrepancy between the prediction by Kerswell (1995) of the
velocity along the characteristics and our results can be traced to the modelling by
this author of the singularity as a change in the boundary conditions, on an O(E1/5)
distance, for the tangential velocity field.

4. Nonlinear study of the full precession problem
4.1. Symmetry of the solution

As noted in § 2, the boundary conditions are symmetric under parity transformation.
On the other hand, Vanyo et al. (1995) and Vanyo & Dunn (2000) did observe motions
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Figure 5. Comparison between the numerical determination and the theoretical expression, as given
by (4.1), of the equatorial components of the rotation vector ω. Relative differences are shown, with
the rotation unit given by (4.1), as a function of the Ekman number E. (a) Equatorial component

in the meridional plane defined by k̂c and k̂p, (b) k̂c and k̂c × k̂p.

symmetric about the axis of rotation that cross the equatorial plane. These motions
do not share the parity symmetry of the boundary conditions. They can arise only as
a result of a symmetry-breaking bifurcation. As Tilgner (1999b), we have found no
evidence of such a bifurcation. It is possible also that we have neglected forces (such
as buoyancy) that are important in laboratory experiments.

4.2. Comparison of the fluid solid-body rotation with Busse’s prediction

In the case of the spherical cavity the expression derived by Busse (1968) for ω
reduces to

ω = ω2

(
k̂c + γ

2.62ω1/2 k̂c × k̂p + k̂c × (k̂p × k̂c)(0.259ω−1/2 + γk̂p · k̂c)
(0.259ω−1/2 + γk̂p · k̂c)2 + 2.622ω

)
, (4.1)

with γ = ΩpE
−1/2. This expression involves only the dimensionless number γ because

we have restricted the general expression of Busse (his expression (3.19)) to the case
of the spherical cavity. Busse showed that this expression is valid when γ sin α � 1,

where α is the angle which k̂p makes with k̂c. The calculations are for α = 23.5◦.
Figure 5 presents a comparison between the numerical determination of ω and the

analytical prediction. Very small values of the Ekman number must be considered to
show convergence to the theoretical limit. On the other hand, the component along

k̂c is not displayed as it is very well recovered. The difference between the numerical

estimate of ω · k̂c and the value predicted by (4.1) scales as γ2. Busse’s equation
still gives a fair approximation of the solution for γ = 1. As γ is further increased,
the solid-body rotation ceases to predominate over other motions and indeed it has
proved impossible to calculate a numerical solution for equation (2.1) with ω given
by (4.1) for γ = 10 and E 6 10−4.5. The agreement between (4.1) and our numerical
determination shows again (see § 3.1) that the singularity of the Ekman boundary
layer at the critical circles does not affect the viscous correction to the spin-over mode
(2, 1, 1) calculated as an expansion in powers of E1/2.

The differential rotation between the interior flow and the solid boundary spawns
once again oblique internal shear layers. We rely on the linear calculations, performed
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E δuφ δs uφ s

10−5 0.8× 10−4 0.192 0.17× 10−4 0.135
10−5.5 1.15× 10−4 0.147 0.21× 10−4 0.116
10−6 1.61× 10−4 0.121 0.23× 10−4 0.085

Table 2. Geostrophic flow. δuφ is the jump of the geostrophic velocity across the cylinders attached
to the critical circles, and δs is the radial distance between the velocity extrema on either side of
the shear layer. The last two columns give the amplitude and the position of the peak located near
the axis.

at much smaller Ekman number, to describe these structures. The novel feature is the
geostrophic shear.

4.3. Geostrophic shear

As long as equation (4.1) is valid, we can identify the amplitude ε of the boundary-
layer flow with γ sin α. Figure 6 shows the part of the flow symmetric around ω for
γ = 0.1. The flow is almost completely geostrophic. It is mainly azimuthal and it
is very much invariant in the ω direction. The numerous strong axial shear layers
found by Hollerbach & Kerswell (1995) (their figure 4), in their study of the unforced
spin-over mode, are not recovered. The meridional component is confined to the
boundary layer in the critical region as the Ekman number is decreased. Figure 7(a)
shows the geostrophic component as a function of the distance to the ω axis, again
for γ = 0.1. With decreasing Ekman number, the axial shear becomes localized on
the cylinder intersecting the boundary at the critical circles, at a distance cos( 1

3
π)

from the axis. As predicted by Busse (1968), the geostrophic velocity scales as γ2

(figure 7b). This steady interior circulation arises in response to nonlinear effects in
the viscous boundary layer. According to Busse, away from the singularity, it becomes
independent of the Ekman number in the limit of vanishing E. Our calculations are
for Ekman numbers too high to show this behaviour unambiguously. On the other
hand, we find that the width of the shear layer scales as E1/5 (see table 2). Hence,
it is defined by the size of the singularity at the boundary. Viscous effects in the
interior do not play a dominant role because they would smooth the shear on O(E1/4)
distances (Stewartson 1966; Moore & Saffman 1969) small compared to the lateral
extension of the singularity. Finally, we find that the velocity jump across the shear
layer shows a dramatic increase as the Ekman number is lowered. The amplitude of
the geostrophic velocity uG in the axial layer attached to the critical circles follows
from a comparison of the orders of magnitude.

As noted by Busse (1968), the angular velocity of the container parallel to ω is
equal to ω. As a result, the component of u that is symmetric around ω vanishes at
the boundary. A classical Ekman boundary layer of O(E1/2) thickness sets in when
an axially symmetric interior circulation is present. In the critical regions, this layer
is interior to the boundary layer for the oscillating flow. The viscous drag on the
ends of the geostrophic cylinders can be determined by considering the flux in the
boundary layer. It scales as E1/2uG. On the other hand, the dominant nonlinear terms
in the φ-direction, in the O(E2/5) boundary layer are

ur
∂uφ

∂r
+
uθ

r

∂uφ

∂θ
. (4.2)

Since the tangential and radial velocities in the critical region are, respectively, O(γ)



294 J. Noir, D. Jault and P. Cardin

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

E
 =

 1
0

–
5

χmax = 4.04×10–7

χmin = –4.04×10–7

dχ = 2.5×10–8

χ

1.0

0.8

0.6

0.4

0.2

0 0.4 0.6 0.8 1.0

E
 =

 1
0

–
5.

5

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

E
 =

 1
0

–
6

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

Vmax = 1.06×10–4

Vmin = –8.36×10–5

dV = 7×10–6

uφ

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

χmax = 3.27×10–7

χmin = –3.27×10–7

dχ = 2×10–8

χmax = 2.77×10–7

χmin = –2.77×10–7

dχ = 2×10–8

0.2

Vmax = 1.34×10–4

Vmin = –9.68×10–5

dV = 1×10–5

Vmax = 1.76×10–4

Vmin = –9.67×10–5

dV = 1×10–5

Figure 6. Axisymmetric component êφ × ∇(χ(r, θ)) + uφ(r, θ)êφ of the flow in a precessing sphere
(êφ is the unit vector in the azimuthal-direction). Left-hand column: meridional flow χ. Right-hand
column: azimuthal velocity uφ. From top to bottom: E = 10−5, E = 10−5.5, and E = 10−6. γ = 0.1.
Contour intervals dV and dχ are indicated.
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Figure 7. Geostrophic velocity as a function of the distance to the axis of the fluid solid-body
rotation. (a) γ = 0.1 and E varies from 10−5 to 10−6. (b) E = 10−5 and γ varies from 1 to 10−3. The
geostrophic flow is scaled by γ2.

and O(γE1/5), the amplitude of the nonlinear effects amounts to γ2E−1/5 in a layer of
O(E2/5) thickness. It follows that the geostrophic velocity scales as γ2E−3/10. Finally,
table 2 (second column) shows that the E−3/10 scaling for the geostrophic circulation
is definitely buttressed by the numerical evidence. The numerical exponent inferred
from the values reported in table 2 is 0.30. In addition to the shear layer identified by
Busse, we find some weak shear, distributed in the interior. It is tiny in comparison
with the main shear except in the vicinity of the rotation axis.

5. Discussion
We now compare our numerical results with experimental observations, which have

been obtained in oblate spheroids. We have shown that the oscillating layers and also
the geostrophic circulation are the consequences of differential rotation between the
fluid and its container. Busse (1968) discussed the region in the parameter space for
which the fluid motion is predominantly a solid-body rotation. According to Busse
(1968), a measure of our parameter γ is given by the smallest of the two quantities
ΩpE

−1/2 and Ωpη
−1, where η is the flattening. His theory applies as one of these two

parameters is small compared to 1 (but see also the recent numerical results of Tilgner
& Busse (2001) for γ > 1 in a spherical shell). With Ωpη

−1 � ΩpE
−1/2, the expression

derived by Busse (1968) for ω reduces to

ω = ω2k̂c + Ωpη
−1k̂c × (k̂p × k̂c), (5.1)

and the parameter γ is estimated as 2.62 Ωpη
−1 instead of ΩpE

−1/2. We have thus
obtained a way to transfer results obtained in the spherical case to the ellipsoidal
case. According to § 3.2, the velocity in the oscillating internal shear layers scales as
γE1/5 whereas the steady geostrophic velocity scales as γ2E−3/10 (see § 4.3). However,
equations (4.1) or (5.1) become less accurate as ΩpE

−1/2 or Ωpη
−1 are comparable

or of order 1. Hence, in order to compare the experimental measurement of Malkus
(1968) of the geostrophic velocity (γ = 0.8, see below) with our numerical prediction,
we do not rely on (5.1). Instead, we use the solvability condition (3.14) of Busse (1968)
to infer the equatorial component of the differential rotation from the measured axial
component (the average westward drift of the dye line photographed by Malkus).
Then, we rely on our numerical calculation and on the E−3/10 scaling to predict the
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Figure 8. Geostrophic velocity as a function of the distance to the axis of the fluid solid-body
rotation. Stars correspond to the Malkus experimental data. The solid line is deduced from the
numerical results (γ = 0.1, E = 10−6) and the observed axial differential rotation between the fluid
and its container (see text).

geostrophic circulation from the equatorial rotation for E = 2.5 × 10−6, the Ekman
number in the Malkus experiment. Figure 8, which is drawn after the figure 3 (left) of
Malkus (1968), shows good agreement between our numerical findings in a full sphere
and the experimental results in an ellipsoidal cavity. Because the oblique oscillating
layers have O(E1/5) thickness, we suspect indeed that the flattening η is negligible,
except for the determination of the differential rotation, as η � E1/5.

On the other hand, the inertial waves, that are conspicuous in the numerical
solutions, have never been visualized in precession experiments (Malkus 1968; Vanyo
et al. 1995). Vanyo et al. (1995) used a shell of flattening η = 1/100. The precession
axis makes an angle α = 23.5◦ with the rotation axis as in the geophysical case and our
calculation. The rotation rate of the spheroid was held constant. It corresponded to an
Ekman number E ∼ 8× 10−7. With these figures, we find that η � E1/5. Vanyo et al.
(1995) varied the precession rate by two orders of magnitude. For the smallest value
of Ωp, we find γ = 0.13 and the theory of Busse (1968) applies. The set of parameters
representative of the Vanyo et al. experiment is close to a set (γ = 0.1;E = 10−6)
discussed at length in § 4.3. For this numerical solution, the velocity inside the oblique
shear layers is 20 times larger than the steady geostrophic circulation. Neither did
Malkus (1968) observe the oblique shear layers. With (γ = 0.8;E = 2.5×10−6; α = 30◦),
we still expect the velocity along the characteristic cones to be three times larger than
the geostrophic velocity. Hence, it is likely that these layers have not been visualized
because of their oscillatory nature and, indeed, McEwan (1970) had to rely on
sophisticated methods to see these layers in a rotating fluid cylinder.

Until the work of Vanyo & Dunn (2000), the experiments had not included an inner
core, which may be important for the geophysical application. The flow in a precessing
spherical shell has been recently investigated numerically by Tilgner (1999b). His study
has encompassed the effect of an imposed magnetic field on the flow. The solution of
Tilgner is dominated by internal layers driven by the shear at the inner core boundary
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(see also Hollerbach & Kerswell 1995; Rieutord & Valdetarro 1997; Tilgner 1999a).
The axisymmetric component of the flow mainly features oblique shear layers that
are probably the result of nonlinear interaction of the flow in the internal oscillating
layers attached to the inner core at the critical circles. In our view, the emergence of
oscillating layers from the boundary with the inner sphere is not yet fully understood
but, in any event, the velocities in these layers are small compared to γ (Tilgner (1999b)
has assumed that the two boundaries are corotating). It follows that the velocities in
the oblique axisymmetric layers are small compared to γ2 and are negligible to the
O(γ2E−3/10) geostrophic velocity in the axial shear layer attached to the critical circles
of the outer boundary. The latter layer dominates the axisymmetric part of the flow
in the asymptotic limit of small Ekman numbers and it is possible that, in a spherical
shell, this occurs only at much smaller Ekman numbers than numerically attainable.
Thus, we anticipate that our conclusions about the axial layer are valid also for a
model including an inner core, and it seems indeed than an axial layer shows up, not
far from the critical circles, in the solution of Tilgner (1999b) (his figure 8a, right), as
the Ekman number is decreased. Finally, we may ponder on the existence of another
axial cylindrical layer attached to the critical circles of the inner boundary.

In the Earth’s core, the value of the dimensionless numbers that are important to
determine the effects of the mantle precessional motion are (η = 1/400, γ = 1.1×10−4,
E = 10−15). Thus, the O(E1/5) width of the shear layers is not very small compared
to the flattening η. The numerical modelling yields a prefactor of order one for the
thickness of these layers. As a result, the inertial waves spawned by the breakdown
of the outer boundary layer in the Earth’s core are perhaps best modelled in the
oblate spheroid geometry. On the other hand, the most significant feature, from
the geophysical viewpoint, is the steady axial shear. The mechanism behind the
development of this interior circulation does not depend on the ellipticity, of which
the only role is to determine the value of the parameter γ. From the numerical values
above and the scaling laws determined in § 4.3, it follows that uG = 3× 10−5 m s−1. It
is comparable to the velocities of the core surface motions inferred from the secular
variation of the Earth’s magnetic field (10−4 m s−1). On the other hand, the magnetic
Reynolds number based on uG and the thickness of the axial layer is only 10−1,
implying that magnetic field generation in the shear layer itself is unimportant.

We thank A. Pais and J.-L. Le Mouël for many stimulating and valuable discussions.
All the computations presented in this paper were performed at the Service Commun
de Calcul Intensif de l’Observatoire de Grenoble. We acknowledge support from the
programme Intérieur de la Terre of CNRS/INSU.

Appendix. Numerical method
Since the fluid we consider is incompressible, the velocity field u can be expressed

in terms of poloidal and toroidal functions:

u = ∇× (T r) + ∇× ∇× (P r) , (A 1)

where r is the position vector. We expand P and T as

P =
∑

l6L,m6min(l,M)

Fml (r, t)Y m
l (θ, φ) , (A 2)

T =
∑

l6L,m6min(l,M)

Gml (r, t)Y m
l (θ, φ) , (A 3)
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where (r, θ, φ) are spherical coordinates, t is time, L and M are truncation levels,

Y m
l (θ, φ) = Cm

l P
m
l (cos(θ))eimφ, (A 4)

Pm
l (cos(θ)) denotes associated Legendre functions, and Cm

l is a coefficient of normal-
ization. Let us define êz = ω/ω. Operating with r · ∇× and r · ∇ × ∇× on (2.1), we
obtain the following set of equations for T and P :(

E∇2 − ∂

∂t

)
L2T + 2ω (êz × r) · ∇T − 2ωQ3P − 2r · (Ωpk̂p(t)× ω)

= r · ∇× (2Ωpk̂p(t)× u+ (u · ∇) u),(
E∇2 − ∂

∂t

)
L2∇2P + 2ω (êz × r) · ∇ (∇2P

)
+ 2ωQ3T = −r · ∇× (∇× (u · ∇) u) .

(A 5)
Q3 and L2 are classically defined as:

Q3 = êz · ∇− 1
2
(L2êz · ∇+ êz · ∇L2), (A 6)

L2 =
∂

∂r
r2 ∂

∂r
− r2∇2. (A 7)

The boundary conditions are (r = 1):

P = T =
∂P

∂r
= 0. (A 8)

As in Dormy, Cardin & Jault (1998), we use a Crank–Nicholson scheme for the
diffusion term and an Adams–Bashford scheme for all the others. Calculation in the
radial direction is by finite-differences. In order to have an accurate enough resolution
of the Ekman boundary layer, we increase the number of points in the vicinity of
the outer surface, and conversely, we stretch the radial grid at the centre of the
fluid to deal with reasonable timesteps and angular resolution. As an example, in
order to calculate the flow in a precessing sphere for γ = 0.1 (see equation (4.1) for
the definition of γ) and E = 10−6, we use a deformed grid of 1000 radial points
(our radial scheme is second-order accurate), with L = 127, M = 7 and 10−2 as the
timestep. Calculations in the φ direction are fully spectral. Nonlinear terms and the
last term on the left-hand side of the first equation (A 5) are calculated by collocation
in the θ-direction. The benefits of linearizing (A 5) without neglecting also the terms
involving Ωp would thus be limited.

REFERENCES

Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739–751.

Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical
shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160,
15–30.

Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.

Greenspan, H. P. 1969 On the non-linear interaction of inertial modes. J. Fluid Mech. 36, 257–264.

Hollerbach, R. & Kerswell, R. R. 1995 Oscillatory internal shear layers in rotating and precessing
flows. J. Fluid Mech. 298, 327–339.

Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions in oscillatory
Ekman boundary layers. J. Fluid Mech. 298, 311–325.

McEwan, A. D. 1970 Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40, 603–640.

Malkus, W. V. R. 1968 Precession of the Earth as the cause of geomagnetism. Science 160, 259–264.



Motions within a precessing sphere 299

Moore, D. W. & Saffman, P. G. 1969 The structure of free vertical shear layers in a rotating fluid
and the motion produced by a slowly rising body. Phil. Trans. R. Soc. Lond. A 264, 597–634.
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